
http://sarst.life.nthu.edu.tw/iSARST

SARST – Structural similarity search Aided by Ramachandran Sequential Transformation

Lo WC, Chang CH, Huang PJ, Lyu PC. **Protein structural similarity search** by **Ramachandran codes**. BMC Bioinformatics 2007, 8:307.

呂平江

清華大學 生命科學系

20100831

Progress High light

 SARST: Structural similarity search Aided by Ramachandran Sequential Transformation.

W. C. Lo, C. H. Chang, P. J. Huang, <u>P. C. Lyu</u>*

BMC Bioinformatics,

2007, 8:307

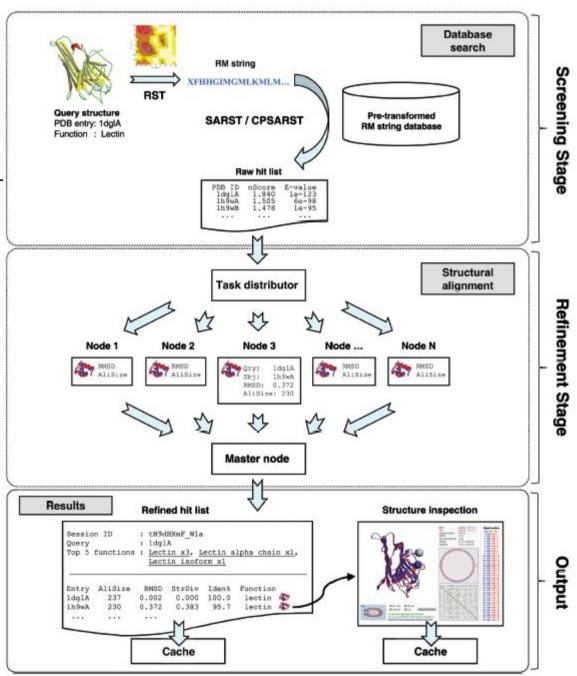
http://sarst.life.nthu.edu.tw/sarst/

✓ CPSARST – An efficient circular permutation search tool applied to the detection of novel protein structural relationships.

W. C. Lo, and <u>P. C. Lyu</u>*. Genome Biology 9, R11 (2008).

http://sarst.life.nthu.edu.tw/cpsarst/

CPDB: a database of circular permutation in proteins. W. C. Lo, C. C. Lee, C. Y. Lee, P. C. Lyu* Nucleic Acids Research, doi:10.1093/nar/gkn679 (Database Issue) (2009).



iSARST: an integrated SARST web server for rapid protein structural similarity searches

W. C. Lo, C. Y. Lee, C. C. Lee, <u>P. C. Lyu</u>*

Nucleic Acids Research, 37(Web Server issue):W545-51 (2009)

http://sarst.life.nthu.edu.tw/isarst/

Introduction to SARST

- SARST transforms 3D protein structures into 1D text sequences and recruit blast to perform <u>protein structural alignment</u> <u>searches</u>
- Features
 - high speed
 - reasonable compromise of accuracy
 - giving statistically meaningful results

Structural Comparisons - Why?

- Protein is the functional unit of biological systems.
- The function of a protein is basically determined by its structure.
- Proteins sharing similar structures usually have similar functions.

Structural Comparisons - How?

- Two categories of current methods
 - By amino acid sequence alignments.
 - By 3D structural alignments.

Classical Sequence Alignment Methods

BLAST

Basic Local Alignment Search Tool

FASTA

 FAST-All, reflecting that it can be used for fast protein comparisons

Performance: Rapid but inaccurate*

Conventional Structural Alignment Methods

- Double Dynamic Programming SSAP
- Distance Alignment Tools DALI
- Combinatorial Extension CE

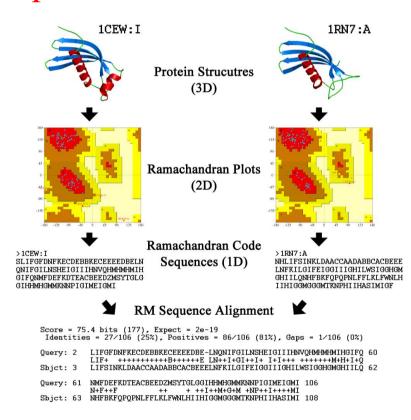
- Vector Alignment Search Tool VAST
- Fast Alignment Search Tool FAST
- MAtching Molecular Models Obtained from Theory – MAMMOTH

The Basic Algorithm of Structural Alignments

- Based on distances or relations among vectors of backbone atoms
- Try to match as many residues and achieve as small RMSDs as possible
- RMSD
 - Root Mean Square Distance

Performance: Accurate but slow

CE takes 2.5 days to search one protein against PDB


Speed vs. Accuracy: Incompatible?

- Possible solution: the linear encoding method
 3D structure 1D text sequence
- Example:

SARST

Structure Alignment by Ramachandran Search
 Tool

Po-Jung Huang (黃柏榕), 2002 Chih-Hung Chang (張志宏), 2004

Query Protein Strucutre (3D)

SARST

Ramachandran Plot

- Structural simifarity

Ramated har in the drawn in

Sequential Ramachandran Code

Transformation

Ramachandran Plot (2D)

SLIFGFONFKECDEBBKECEEEEDBELN QNIFGILNSHEIGIIIHNVQHMHMHMIH GIFQNMFDEFKDTEACBEEDZMSYTGLG

Ramachandran Code Sequence (1D)

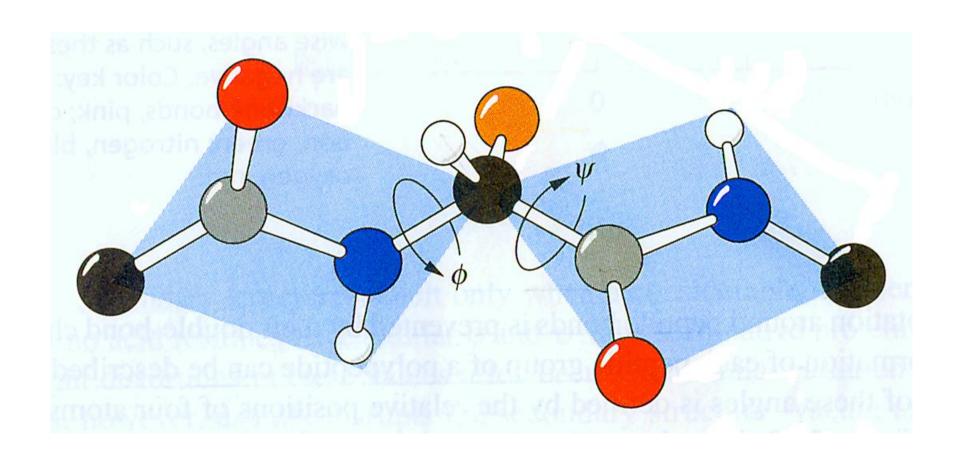
Pre-transformed Structure Database

101M:_ GHQBCABBACDEBBDECKEMAAABACCABACCBEBMDD. 117E:A HIGMHGYHEPIEKI IMIHHMPPHETI KENKI FAHEMCK ... 15C8:I_IHHHHGOEGIGIEFWELGGIIMGHKIII.DKNHIGGGGH.... 1ADD-A LOBCACCCACARFAFARKKCDAACRACAACCRFRMDDD 1D06:A HDCBABABABAKNFFDBBEDKKLCFFGGGIOKNWLLN... 1E5U:I HMGLNEMHHFDZNPHMZHLTNIHMYCZGIGIHGGZVEV...

Database Search

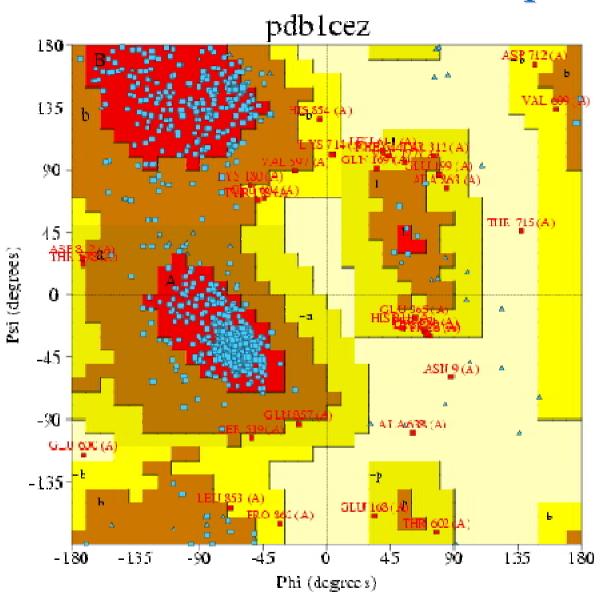
Database Se

Wei-	PDB ID-Chen	Chain g Lo	(羅惟]	value -), 200	6
1.	1CEW	I	180	́3е-46	(

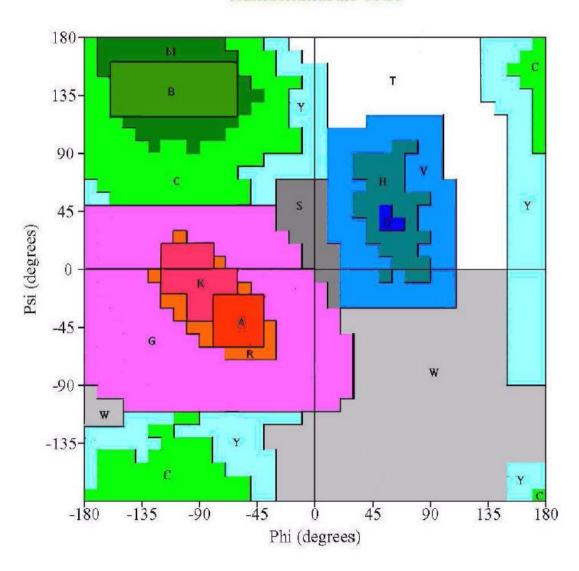

1-0	Cheng	Lo	(羅惟止)), 2006	5.	1YVB I	81	2e-16	Cystat
ι.	1CEW	Ι	180	3e-46	Cystatin	(Prote	inase	Inhibit	or)
2.	1R4C	Ε	85	1e-17	Cystatin	C with	Domai	n Swapp	ing
3.	2CH9	Α	84	2e-17	Cystatin	F			
ł.	1R4C	H	82	1e-16	Cystatin	C with	Domai	n Swapp	ing
5.	1YVB	I	81	2e-16	Cystatin				

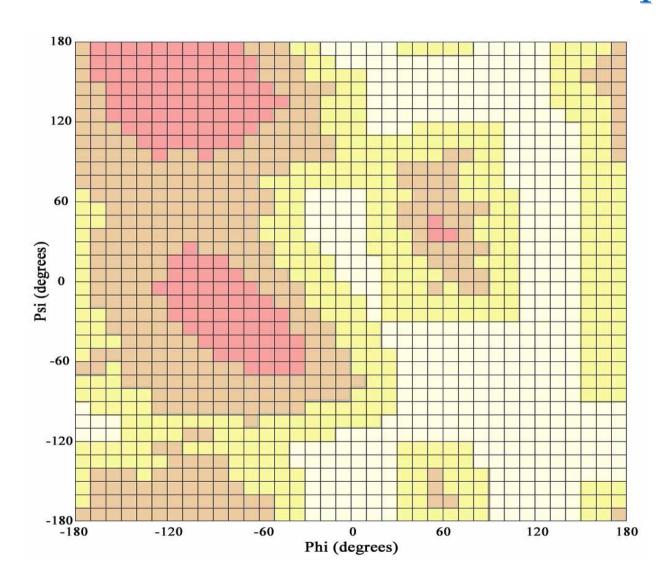
No.	PDB ID	Chain	Score	E-value	Description	Organism
1.	1CEW	I	180	3e-46	Cystatin (Proteinase Inhibitor)	Gallus gallus
2.	1R4C	E	85	1e-17	Cystatin C with Domain Swapping	Homo sapiens
3.	2CH9	A	84	2e-17	Cystatin F	Homo sapiens
4.	1R4C	H	82	1e-16	Cystatin C with Domain Swapping	Homo sapiens
5.	1YVB	I	81	2e-16	Cystatin	Gallus gallus
atir	ı (Pr	otein	ase :	Inhibit	or) Gallus gallus	

Homo sapiens Homo sapiens Homo sapiens Gallus gallus

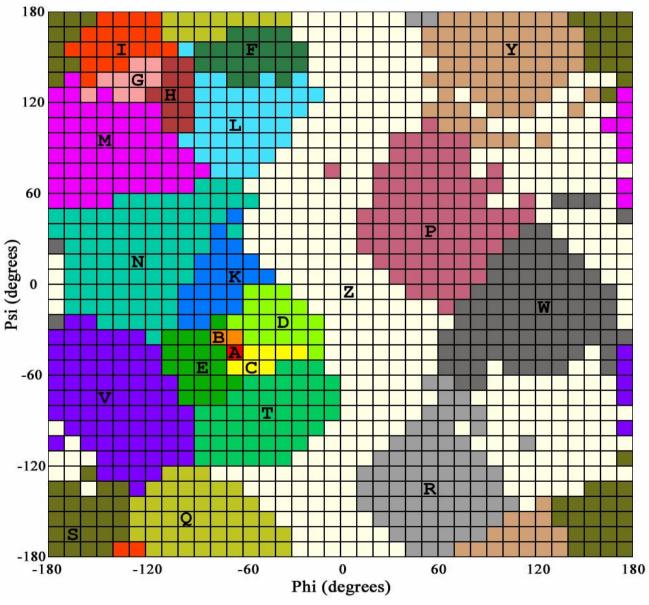


Phi (φ) and Psi (φ) Angles


The Ramachandran Map

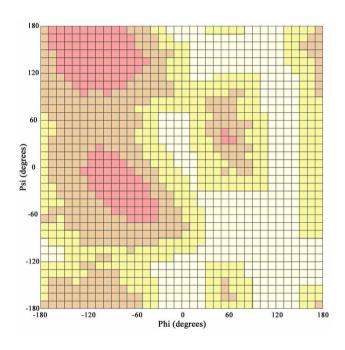

An Example of Organized Ramachandran Map

Ramachandran Code



Dissection of the Ramachandran plot

Ramachandran (RM) Sequential Transformation


Algorithm: Nearest-RM Seq: 4 E E neighbor clustering

- 1,296 cells were clustered into 22 groups
- Each group was assigned with an English letter, that is, a Ramachandran code

W.C. Lo, et al. **Protein** structural similarity search by Ramachandran codes. *BMC Bioinformatics* 2007, 8:307.

Determine the Distance Among Cells

$$RSAD = \sqrt{(\Delta \varphi)^2 + (\Delta \psi)^2}$$

How to Evaluate Similarities?

AAAAAWW AAAAAWW

WWWWAAA WWWWWAA

Are they equally similar?

Score A:A = ?

Score W:W = ?

Score A:W and W:A = ?

The Scoring Matrix of SARST

	A	В	С	D	Е	Т	K	V	N	F	G	Н	Ι	L	M	Q	S	Y	R	P	W	Z	Х
Α	3	2	2	1	1	0	-2	-3	-3	-8	-11	-11	-13	-8	-8	-9	-14	-9	-7	-8	-7	-4	0
В	2	2	2	1	1	1	0	-1	-2	-6	-12	-10	-10	-7	-7	-6	-10	-8	-5	-6	-4	-6	0
С	2	2	2	1	1	3	-1	-2	-3	-6	-13	-11	-9	-7	-8	-7	-9	-10	-2	-7	-5	-3	0
D	1	1	1	3	1	2	2	-1	-1	-4	-9	-7	-8	-4	-6	-5	-7	-4	1	-3	-4	-2	0
Ε	1	1	1	1	3	1	2	3	1	-5	-7	-6	-7	-4	-4	-4	-7	-2	-1	-5	-3	-1	0
Т	0	1	3	2	1	5	-1	2	-1	-2	-6	-6	-4	-4	-5	-2	-4	-4	2	-1	-1	3	0
K	-2	0	-1	2	2	-1	4	1	3	-3	-6	-6	-5	-3	-3	-2	-5	-2	-2	0	0	-1	0
V	-3	-1	-2	-1	3	2	1	9	3	-3	-4	-4	-2	-2	-2	0	0	3	2	-1	3	4	0
N	-3	-2	-3	-1	1	-1	3	3	5	-2	-4	-4	-3	-2	0	-2	-3	-2	-1	1	1	1	0
F	-8	- 6	- 6	-4	-5	-2	- 3	- 3	-2	5	-1	1	0	3	0	3	0	2	0	-2	-2	1	0
G	-11	-12	-13	-9	-7	-6	-6	-4	-4	-1	4	3	3	0	2	0	1	-3	-5	-5	-6	-2	0
Н	-11	-10	-11	-7	-6	-6	-6	-4	-4	1	3	4	1	2	2	0	-1	-2	-4	-3	-5	-1	0
Ι	-13	-10	-9	-8	-7	-4	-5	-2	-3	0	3	1	4	0	1	2	4	0	-1	-4	-7	-2	0
L	-8	-7	-7	-4	-4	-4	-3	-2	-2	3	0	2	0	4	1	1	-1	0	0	-1	-2	1	0
M	-8	-7	-8	-6	-4	-5	-3	-2	0	0	2	2	1	1	4	0	1	-1	-4	-2	-2	1	0
Q	-9	-6	-7	-5	-4	-2	-2	0	-2	3	0	0	2	1	0	6	1	3	1	-3	-3	1	0
S	-14	-10	-9	-7	-7	-4	-5	0	-3	0	1	-1	4	-1	1	1	7	5	2	-3	-3	3	0
Y	-9	-8	-10	-4	-2	-4	-2	3	-2	2	-3	-2	0	0	-1	3	5	10	7	2	2	7	0
R	-7	-5	-2	1	-1	2	-2	2	-1	0	-5	-4	-1	0	-4	1	2	7	11	3	0	7	0
P	-8	-6	-7	-3	-5	-1	0	-1	1	-2	-5	-3	-4	-1	-2	-3	-3	2	3	8	7	4	0
W	-7	-4	-5	-4	-3	-1	0	3	1	-2	-6	-5	-7	-2	-2	-3	-3	2	0	7	9	5	0
Z	-4	-6	-3	-2	-1	3	-1	4	1	1	-2	-1	-2	1	1	1	3	7	7	4	5	6	0
X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Building the Scoring Matrix (SM)

• A "regenerative approach" was developed to build SM for SARST based on the BLOSUM algorithm*:

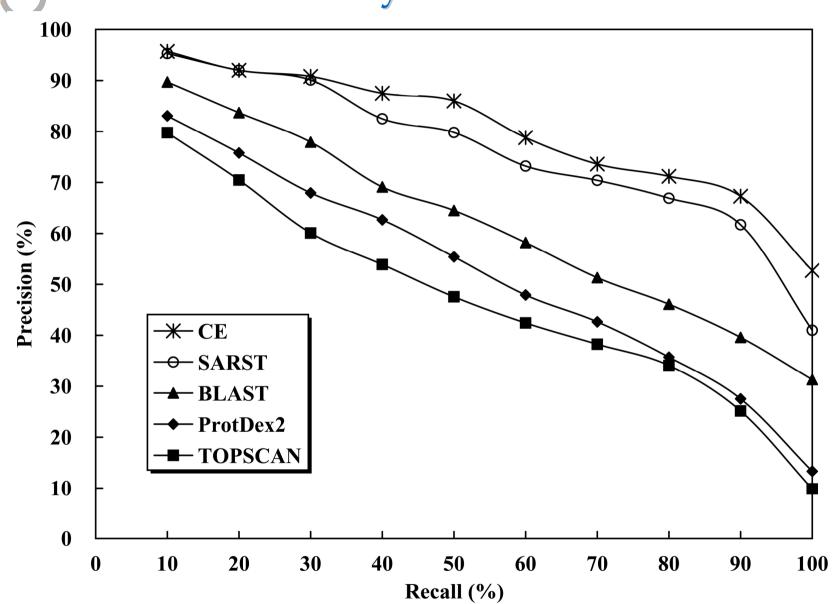
$$Score_{ij} = f_s \times \log_2(q_{ij}/e_{ij})$$

$$\frac{q_{ij}}{e_{ij}} = \frac{95.5\%\%}{1.3\%7\%\%3\%}$$

^{*} Henikoff and Henikoff. (1992) Proc Natl Acad Sci USA. 89:10915-10919

The Scoring Matrix of SARST

	A	В	С	D	Е	Т	K	V	N	F	G	Н	Ι	L	M	Q	S	Y	R	P	W	Z	х
A	3	2	2	1	1	0	-2	-3	-3	-8	-11	-11	-13	-8	-8	-9	-14	-9	-7	-8	-7	-4	0
В	2	2	2	1	1	1	0	-1	-2	-6	-12	-10	-10	-7	-7	-6	-10	-8	-5	-6	-4	-6	0
С	2	2	2	1	1	3	-1	-2	-3	-6	-13	-11	-9	-7	-8	-7	-9	-10	-2	-7	-5	-3	0
D	1	1	1	3	1	2	2	-1	-1	-4	-9	-7	-8	-4	-6	-5	-7	-4	1	-3	-4	-2	0
Ε	1	1	1	1	3	1	2	3	1	-5	-7	-6	-7	-4	-4	-4	-7	-2	-1	-5	-3	-1	0
Т	0	1	3	2	1	5	-1	2	-1	-2	-6	-6	-4	-4	-5	-2	-4	-4	2	-1	-1	3	0
K	-2	0	-1	2	2	-1	4	1	3	-3	-6	-6	-5	-3	-3	-2	-5	-2	-2	0	0	-1	0
V	-3	-1	-2	-1	3	2	1	9	3	-3	-4	-4	-2	-2	-2	0	0	3	2	-1	3	4	0
N	-3	-2	-3	-1	1	-1	3	3	5	-2	-4	-4	-3	-2	0	-2	-3	-2	-1	1	1	1	0
F	-8	- 6	- 6	-4	- 5	-2	- 3	- 3	-2	5	-1	1	0	3	0	3	0	2	0	-2	-2	1	0
G	-11	-12	-13	-9	-7	-6	-6	-4	-4	-1	4	3	3	0	2	0	1	-3	-5	-5	-6	-2	0
Н	-11	-10	-11	-7	-6	-6	-6	-4	-4	1	3	4	1	2	2	0	-1	-2	-4	-3	-5	-1	0
Ι	-13	-10	-9	-8	-7	-4	-5	-2	-3	0	3	1	4	0	1	2	4	0	-1	-4	-7	-2	0
L	-8	-7	-7	-4	-4	-4	-3	-2	-2	3	0	2	0	4	1	1	-1	0	0	-1	-2	1	0
M	-8	-7	-8	-6	-4	-5	-3	-2	0	0	2	2	1	1	4	0	1	-1	-4	-2	-2	1	0
Q	-9	-6	-7	-5	-4	-2	-2	0	-2	3	0	0	2	1	0	6	1	3	1	-3	-3	1	0
S	-14	-10	-9	-7	-7	-4	-5	0	-3	0	1	-1	4	-1	1	1	7	5	2	-3	-3	3	0
Y	-9	-8	-10	-4	-2	-4	-2	3	-2	2	-3	-2	0	0	-1	3	5	10	7	2	2	7	0
R	-7	-5	-2	1	-1	2	-2	2	-1	0	-5	-4	-1	0	-4	1	2	7	11	3	0	7	0
P	-8	-6	-7	-3	-5	-1	0	-1	1	-2	-5	-3	-4	-1	-2	-3	-3	2	3	8	7	4	0
W	-7	-4	-5	-4	-3	-1	0	3	1	-2	-6	-5	-7	-2	-2	-3	-3	2	0	7	9	5	0
Z	-4	-6	-3	-2	-1	3	-1	4	1	1	-2	-1	-2	1	1	1	3	7	7	4	5	6	0
X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

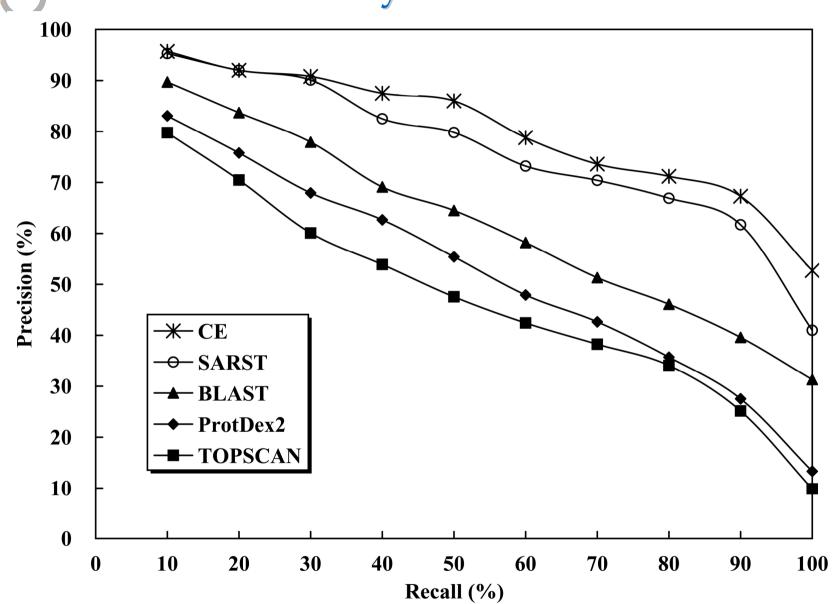


Speed Evaluation

Method	Average time per query (sec)	Relative to SARST
CE	82,789.20	243,497.65
TOPSCAN	85.08	250.24
ProtDex2	0.76	2.24
BLAST	0.30	0.88
SARST	0.34	1.00
SARST (2 CPUs)	0.16	0.47

TBI

Accuracy Evaluation



Information Retrieval Techniques

- Recall
 - → the ability to extract answers
- Precision
 - → the ability to give correct answers

TBI

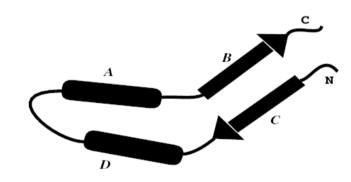
Accuracy Evaluation

Next...

http://sarst.life.nthu.edu.tw/iSARST

CPSARST - Circular Permutation Search Aidedby Ramachandran Sequential Transformation

Lo WC, Lyu PC: **CPSARST:** an efficient circular permutation search tool applied to the detection of novel protein structural relationships. Genome Biology 2008,9:R11.



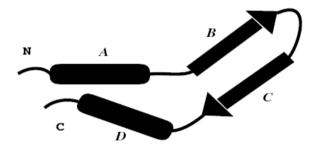
Circular Permutation (CP)

- Circular permutation of a protein can be visualized as if the original N- and C-termini were linked and new ones created elsewhere¹.
- In most of the cases, naturally occurring CPs have similar 3D structures and conserved biological functions².
- Efficient CP search tool is not available yet.

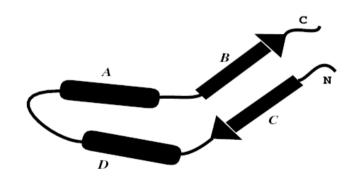
The sequence: ..A..B..C..D..

The sequence ..C..D..A..B..

- 1. Uliel S et al.: A simple algorithm for detecting circular permutations in proteins. *Bioinformatics* 1999, **15**:930-936.
- 2. Lindqvist Y, Schneider G: Circular permutations of natural protein sequences: structural evidence. Curr Opin Struct Biol 1997,7:422-427.


Natural Circular Permutants

- Plant lectins
- Transaldolases
- DNA and other methyltransferases
- Ferredoxins
- Proteinase inhibitors
- Bacterial β -glucanases
- Swaposins
- Glucosyltransferases
- β -glucosidases
- SLH domains
- C2 domains
- FMN-binding proteins
- Double- $\varphi \beta$ -barrels
- Glutathione synthetases



Circular Permutation (CP)

- Circular permutation of a protein can be visualized as if the original N- and C-termini were linked and new ones created elsewhere¹.
- In most of the cases, CPs have similar 3D structures and conserved biological functions².
- Efficient CP search tool is not available yet.

The sequence: ..A..B..C..D..

The sequence ..C..D..A..B..

- 1. Uliel S et al.: A simple algorithm for detecting circular permutations in proteins. *Bioinformatics* 1999, **15**:930-936.
- 2. Lindqvist Y, Schneider G: Circular permutations of natural protein sequences: structural evidence. *Curr Opin Struct Biol* 1997,**7**:422-427.

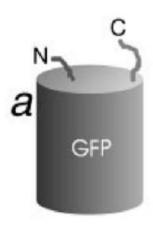
Applications of Circular Permutation

- Folding researches.
- Determination of structurally and functionally important segments^{1,2}.
- Modification (enhancement) of the activity and/or stability³⁻⁵.
- Creation of novel fusion proteins, the tethered sites of which are not confined to the native termini^{5,6}.

^{1.} Anand.B. et al. Nucleic Acid Res 2006;34:2196-2205.

^{2.} Gebhard.LG. et al. J Mol Biol 2006;358:280-288.

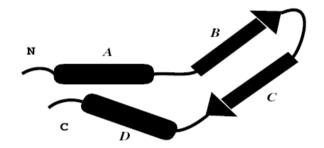
^{3.} Qian.Z., Lutz.S. J Am Chem Soc 2005;127:13466-13467.

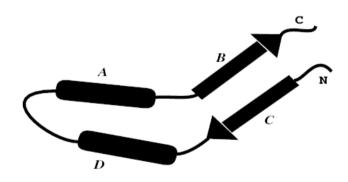

^{4.} Schwartz.TU. et al. Protein Sc 2004;13:2814-2818.

^{5.} Kojima.M. et al. J Biosci Bioeng 2005;100:197-202

^{6.} Baird.GS. et al. Proc Natl Acad Sci USA 1999;96:11241-11246.

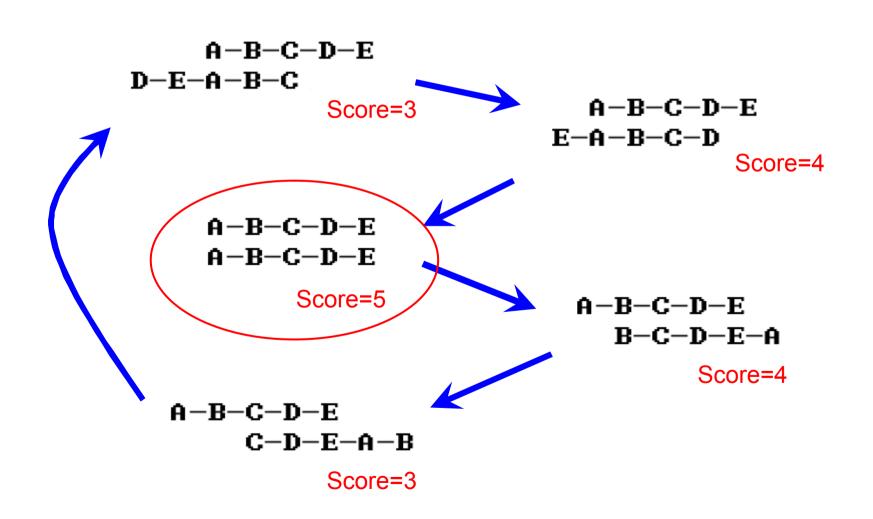
Fluorescent Calcium Sensor with CP


G.S. Baird, et al. Circular permutation and receptor insertion within green fluorescent proteins. *PNAS* 1999;96:11241-11246



Circular Permutation (CP)

- Circular permutation of a protein can be visualized as if the original N- and C-termini were linked and new ones created elsewhere¹.
- In most of the cases, naturally occurring CPs have similar 3D structures and conserved biological functions².
- Efficient CP search tool is not available yet.


The sequence: ..A..B..C..D..

The sequence ..C..D..A..B..

- 1. Uliel S et al.: A simple algorithm for detecting circular permutations in proteins. *Bioinformatics* 1999, **15**:930-936.
- 2. Lindqvist Y, Schneider G: Circular permutations of natural protein sequences: structural evidence. Curr Opin Struct Biol 1997,7:422-427.

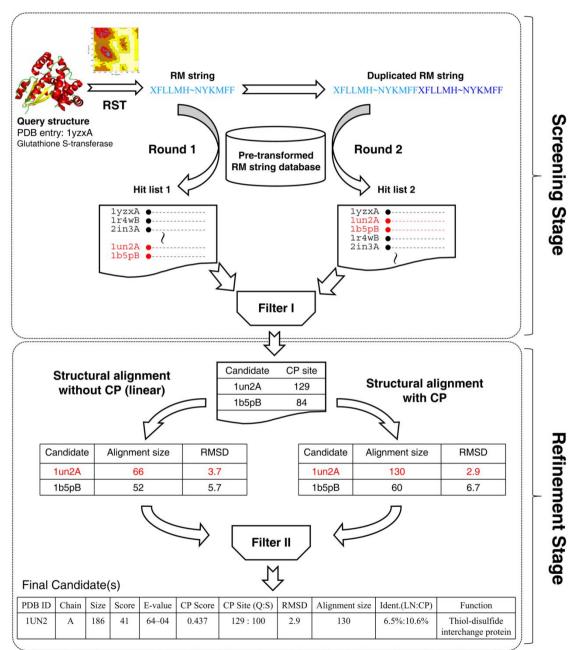
Basic Approach to the Detection of CP

The Basic Idea of CPSARST

Target: A-B-C-D-E Query: D-E-A-B-C

A-B-C-D-E

Answer 1: A-B-C-D-E


D-E-A-B-C

D-E-A-B-C

Score = $\frac{A-B-C-D-E}{D-E-A-B-C}$ Score = $\frac{S}{S}$

The Double Filter-and-Refine Strategy

Statistics of protein structural database searches by CPSARST

	Database		nrPDB-90	nrSCOP-90
	No. of proteir	ns	14,422	11,688
	1. Detected by am	nino acid sequence	5,020	1,802
No. of	2. Detected only be string	y Ramachandran	252,287	196,533
candidate pairs		Total	2,911	4,228
Pwz	3. Confirmed after the refinement stage	Symmetric CP	682	1,161
	Total No. of protei	n pairs	208.0×10^6	136.6×10^6
Т	Total running time (minutes)	3,942	1,974
No. of	protein pairs scann	ed per minute	52,764	69,204

Speed Advantage of CPSARST

- 4 times faster than <u>UFAU</u> (sequence-based)
 - Uliel S et al.: A simple algorithm for detecting circular permutations in proteins. Bioinformatics 1999,15:930-936.
- 8,824 times faster than SAMO (structure-based)
 - Chen L et al.: Revealing divergent evolution, identifying circular permutations and detecting active-sites by protein structure comparison. *BMC Struct Biol* 2006, **6**:18.
- CPSARST requires only 1.7 minute to scan the current PDB (~90,000 polypeptides).

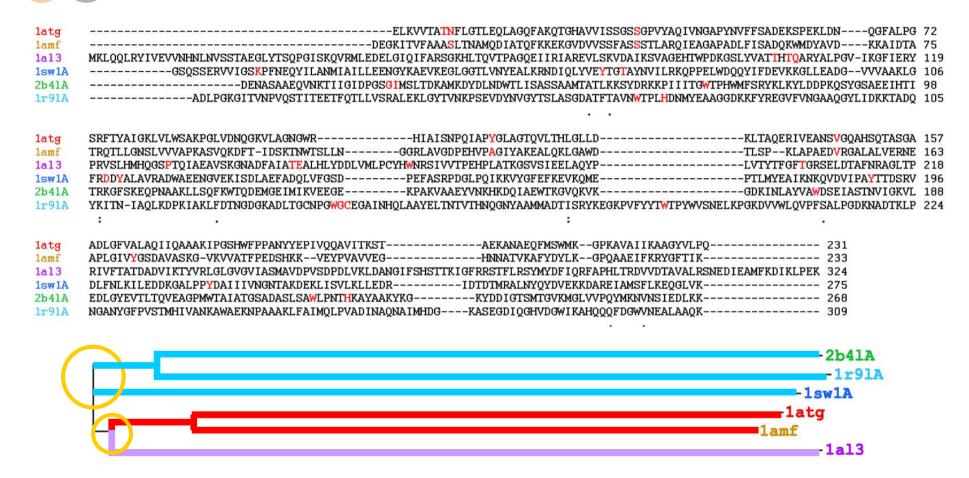
Performance of pair-wise comparisons for natural sandidate CP pairs over various sequence identities, Alignment size

Average protein size)1

Identity (%)	No. of		Structu	ral diversity	
	candidate CP pairs	CPSARST		SHEBA	SAMO
≤ 10	823	6.309		11.180	4.396
10 ~20	152	5.864		13.881	4.994
20 ~ 30	11	3.581		4.506	3.363
30 ~ 40	33	1.868		3.284	2.210
40 ~ 50	40	1.755		3.096	1.544
> 50	9	1.385		2.247	1.520

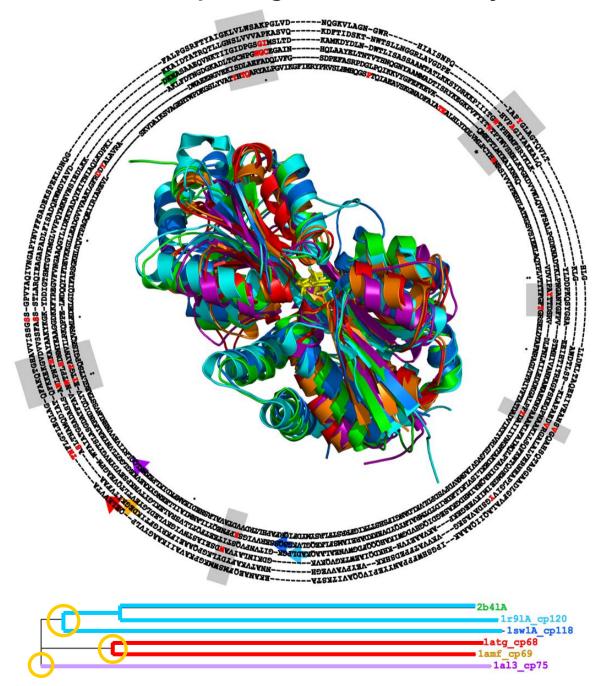
Lu G: **Top: A** new method for protein structure comparisons and similarity searches. *J Appl Cryst* 2000,**33**:176-183.

39

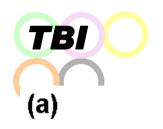

Top 20 homologs retrieved from nrPDB by DALI for hypothetical protein YlqF

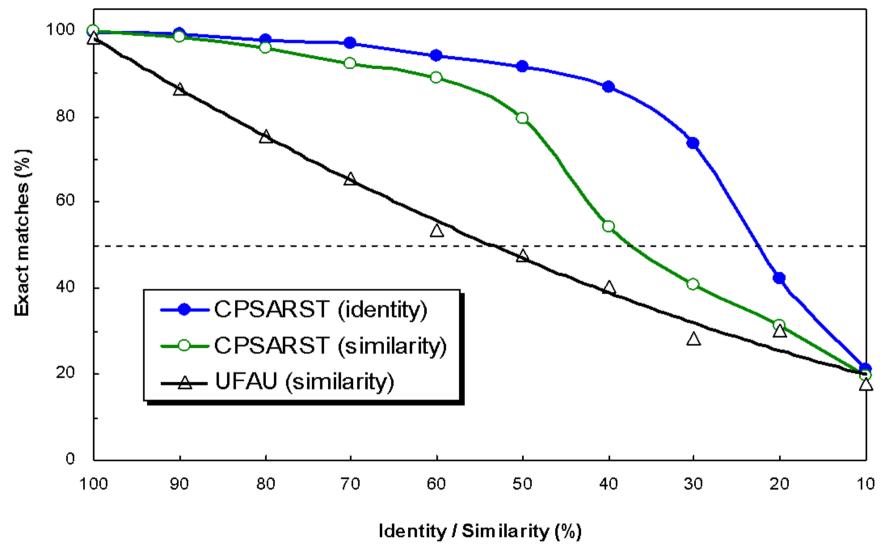
No.	PDB entry / Size	Function
1	1pujA / 261	Conserved hypothetical protein YlqF
2	1u0lA / 278	Probable GTPase
3	1ctqA / 166	p21h-Ras-1 fragment
4	1ejjA / 508	Phosphoglycerate mutase (isomerase)
5	1gpmA / 501	Amidotransferase, GMP synthetase
6	1efcA / 386	Elongation factor Eftu (RNA binding)
7	1hrkA / 359	Ferrochelatase fragment (lyase)
8	1ni5A / 428	Putative cell cycle protein Mesj
9	1dpgA / 485	Glucose 6-phosphate reductase
10	2hjgA / 390	GTP-binding protein engA
11	1veeA / 134	Unknown function proline-rich protein
12	1cqxA / 403	Flavohemoprotein (lipid binding)
13	2p8zT / 813	Elongation factor 2
14	1mkyA / 400	Probable GTP-binding protein
15	1dar / 615	Elongation factor G (translational GTPase)
16	1kk1A/397	Eif2gamma mutant
17	1hurA / 180	Human ADP-ribosylation factor 1
18	1 fdr / 244	Flavodoxin reductase
19	2clsA / 179	Rho-related GTP-binding protein
20	1wcwA / 254	Uroporphyrinogen III synthase
21	1ak1 / 308	Ferrochelatase

Top 20 circular permutants detected from nrPDB by CPSARST for hypothetical protein YlqF


	V I	
No.	PDB entry / Size	Function
1	1ZBD / 203	Rabphilin-3A
2	1KY2 / 182	GTP-binding
3	2F7S / 217	Ras-related protein Rab-27B protein YPT7P
4	2NZJ / 175	GTP-binding protein REM 1
5	1T91 / 207	Ras-related protein Rab-7
6	1X3S / 195	Ras-related protein Rab-18
7	1YU9 / 175	GTP-binding protein, GTPase domain
8	2EW1 / 201	Ras-related protein Rab-30
9	2GF9 / 189	Ras-related protein Rab-3D
10	1YVD / 169	Ras-related protein Rab-22A
11	1PUI / 210	Probable GTP-binding protein engB
12	2O52 / 200	Ras-related protein Rab-4B
13	1U8Y / 168	Ras-related protein Ral-A
14	1HUQ / 164	Rab5C, GTPase domain
15	2HUP / 201	Ras-related protein Rab-43
16	1FZQ / 181	ADP-ribosylation factor-like protein 3
17	2OCB / 180	Ras-related protein Rab-9B
18	10IV / 191	Ras-related protein Rab-11A
19	2FN4 / 181	Ras-related protein R-Ras
20	1Z0F / 179	Rab14, member Ras oncogene family

Multiple Alignment of Raw Sequences


Multiple Alignment of Circularly-Permutated Sequences



Possible Applications of CPSARST

- Bank-against-bank searches are achievable.
- Develop automated procedures such as the functional assignment system for novel hypothetical proteins
- Construct CP database



http://sarst.life.nthu.edu.tw/iSARST/

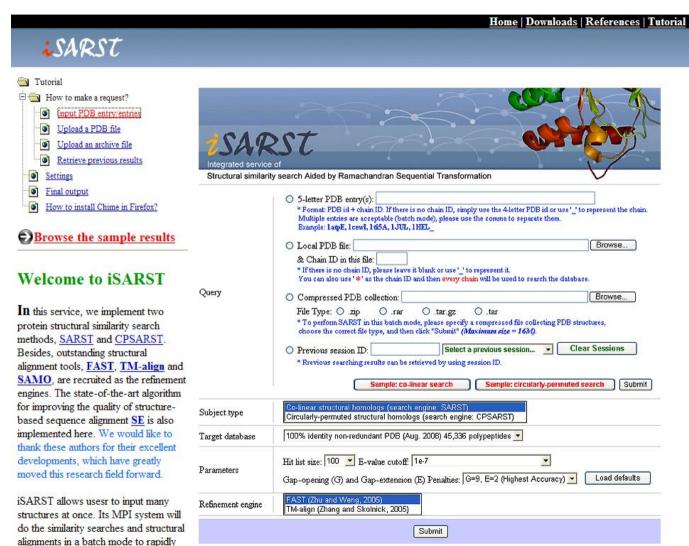
Home | Downloads | References | Tutorial

*SARST

Welcome to iSARST

Currently 85 threads are running on this PC-cluster.

A typical search along with superimposing 100 structures takes only 3-5 seconds.


Circular permutants can be identified, even when the sequence identity is <10% (*Example pair / family).

Please enjoy the speed, accuracy and convenience brought about by iSARST!

	* Format: PDB id + chain ID. If there is no chain ID, simply use the 4-letter PDB id or use '_' to represent the cha Multiple entries are acceptable (batch mode), please use the comma to separate them. Example: latpE, lcewI, lti5A, lJUL, lHEL_, dlswya_, dloxda_
	○ Local PDB file: 瀏覽
	& Chain ID in this file: * If there is no chain ID, please leave it blank or use '_' to represent it. You can also use '*' as the chain ID and then every chain will be used to search the database.
uery	○ Compressed PDB collection:
	File type: O .zip O .rar O .tar.gz O .tar * To perform SARST in this batch mode, please specify a compressed file collecting PDB structures, choose the correct file type, and then click "Submit" (Maximum size = 16M).
	File type: O .zip O .rar O .tar.gz O .tar * To perform SARST in this batch mode, please specify a compressed file collecting PDB structures,

Tutorial of *i*SARST

